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In this section, we prove the Bern-Carrasco-Johansen (BCJ) and Kawai-Lawenllen-Tye (KLT)

relations from the string theory viewpoint.

String theory is useful computational tool for the real-world non-supersymmetric amplitudes.

In the section, we do not take care of the normalization convention of the amplitude (spacetime

metric, Lie algebraic generator, i for the amplitude, . . .). The reason is that we are only interested

in homogeneous linear relations.

I. OPEN STRING AMPLITUDES AND THE BCJ RELATION

For the open string amplitude with Chan-Paton factors. the tree amplitude is again decomposed

to the sum of partial amplitudes,

Aopen =
∑

σ∈Sn−1

tr(taσ1 taσ2 . . . tan)A (σ1σ2 . . . n) (1)

where the partial amplitude is a disk boundary integration.

A (12 . . . n) =
8ign−2

α′2
1

2
n−2
2

∫
x1≤x2≤...xn

dx1dx2 . . . dxn

dxadxbdxc
(xb − xa)(xc − xb)(xc − xa)

×
( ∏

1≤i<j≤n
(xj − xi)2α′ki·kj

)
exp

(∑
i<j

2α′εi · εj
(xi − xj)2

+
∑
i 6=j

2α′ki · εj
xi − xj

)∣∣∣∣
linear

(2)

where xi’s are Kobe-Nielsen variables.

String amplitude is, in general, much more complicated than Yang-Mills amplitude. However,

since the string effective action for Bosonic theory is For example, the bosonic string theory’s gauge

effective theory is,

S =

∫
ddx

(
− 1

4g2
tr(FµνF

µν)− 2iα′

3g2
tr(Fµ

νFν
ωFω

µ) + . . .

)
(3)

it is well-known that in the α′ → 0 limit,

A (1, . . . n)→ AYM(1, . . . n) (4)

A. 4-point example

We can fix x1 = 0, x2 = 1 and x4 =∞, and integrate over x3. The evaluation of (2) is tedious

but straightforward. The ordering A (1234) is

A (1234) =
ig2

2

Γ(−α′s)Γ(−α′t)
Γ(α′u+ 1)

K(1234) (5)
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Where K(1234) is the kinematic factors containing the polarization vectors. And,

K(1234) = KType I(1234) +KBosonic(1234) (6)

where KType I is the same kinetic term as that in Type I open string theory.

KType I(1234) = α′2(stε1 · ε3ε2 · ε4 + suε2 · ε3ε1 · ε4 + tuε1 · ε2ε3 · ε4)

−2α′2s(ε1 · k4ε3 · k2ε2 · ε4 + ε2 · k3ε4 · k1ε1 · ε3 + ε1 · k3ε4 · k2ε2 · ε3

+ε2 · k4ε3 · k1ε1 · ε4)

−2α′2t(ε2 · k1ε4 · k3ε3 · ε1 + ε3 · k4ε1 · k2ε2 · ε4 + ε2 · k4ε1 · k3ε3 · ε4

+ε3 · k1ε4 · k2ε2 · ε1)

−2α′2u(ε1 · k2ε4 · k3ε3 · ε2 + ε3 · k4ε2 · k1ε1 · ε4 + ε1 · k4ε2 · k3ε3 · ε4

+ε3 · k2ε4 · k1ε1 · ε2) (7)

Supersymmetry puts strong constraints on the possible interactions, so the non-supersymmetric

theory have much more terms,

KBosonic(1234) = 4α′3s

[
ε1 · k3ε2 · k3(ε3 · k1ε4 · k1 + ε3 · k2ε4 · k2)+

1

3
(ε1 · k2ε2 · k3ε3 · k1 − ε1 · k3ε2 · k1ε3 · k2)(ε4 · k1 − ε4 · k2)

]
+4α′3t

[
ε2 · k1ε3 · k1(ε1 · k3ε4 · k3 + ε1 · k2ε4 · k2)+

1

3
(ε1 · k3ε2 · k1ε3 · k2 − ε1 · k2ε2 · k3ε3 · k1)(ε4 · k3 − ε4 · k2)

]
+α′3u[ε1 · k2ε3 · k2(ε2 · k1ε4 · k1 + ε2 · k3ε4 · k3)+

1

3
(ε1 · k2ε2 · k3ε3 · k1 − ε1 · k3ε2 · k1ε3 · k2)(ε4 · k3 − ε4 · k1)]

+(2α′)2 st

4

1

1 + α′u
(ε1 · ε3 − (2α′)ε1 · k3ε3 · k1)(ε2 · ε4 − (2α′)ε2 · k4ε4 · k2)

+(2α′)2 tu

4

1

1 + α′s
(ε1 · ε2 − (2α′)ε1 · k2ε2 · k1)(ε3 · ε4 − (2α′)ε3 · k4ε4 · k3)

+(2α′)2 su

4

1

1 + α′t
(ε1 · ε4 − (2α′)ε1 · k4ε4 · k1)(ε2 · ε3 − (2α′)ε2 · k3ε3 · k2)

−α′2(stε1 · ε3ε2 · ε4 − suε2 · ε3ε1 · ε4 − tuε1 · ε2ε3 · ε4) (8)

It is interesting to look at this amplitude in detail. First, from the Gamma function expansion, the

only massless poles are s and t while the u pole is absent. This is consistent with the color-ordered

Yang-Mills Feynman diagram analysis.
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In the low energy limit, the leading order of the scattering amplitude is,

A (1234) ⊃ 1

α′
1

st
KType I → A(1234). (9)

This term is the same as the Yang-Mills theory scattering amplitude.

Note that, explicitly, both the kinematic factors KType I and KBosonic and totally symmetric in

the incoming states, for example, under 1↔ 2.

KType I(1234) = KType I(2134), KBosonic(1234) = KBosonic(2134). (10)

This permutation exchanges u and t. Hence,

A (1234) sin(πα′t) = A (2134) sin(πα′u) (11)

tA(1234) = uA(2134), (12)

where the second equality explicitly implies the BCJ relation for four point.

It is not practical to compute the Yang-Mills amplitude for the string theory low-energy limit.

However, it is easy to derive Yang-Mills amplitude relations from string theory relations.

Here we drive the 4-point BCJ amplitude from the viewpoint of monodromy relations [1].

A (2134) =
8i

α′2

(
1√
2

)2 ∫ 0

−∞
dx2 (−x2)

α′
2
k1·k2(1− x2)

α′
2
k2·k3 f̄(x2) (13)

A (1234) =
8i

α′2

(
1√
2

)2 ∫ 1

0
dx2 x

α′
2
k1·k2

2 (1− x2)
α′
2
k2·k3 f̄(x2) (14)

A (1324) =
8i

α′2

(
1√
2

)2 ∫ ∞
1

dx2 x
α′
2
k1·k2

2 (x2 − 1)
α′
2
k2·k3 f̄(x2) (15)

where the f̄(x2) contains the polarizations,

f̄(x2) = exp

(
α′

2

∑
i>j

ζi · ζj
(xi − xj)2

− α′

2

∑
i 6=j

ζi · kj
xi − xj

)∣∣∣∣
multiple-linear

. (16)

and we set x1 = 0, x3 = 1 and x4 =∞. Consider the integral,

0 =
8i

α′2

(
1√
2

)2 ∫ ∞+iε

−∞+iε
dx2 x

α′
2
k1·k2

2 (x2 − 1)
α′
2
k2·k3 f̄(x2) (17)

where ε is a small positive constant. The branch cut for the complex function za is defined to be

the negative real axis. By the careful analysis of (17), we have

eiπ(α
′
2
k1·k2)A (2134) + A (1234) + e−iπ(α

′
2
k2·k3)A (1324) = 0. (18)
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By stripping the polarization vectors, we can treat the partial amplitudes as real quantities. Then,

the real and complex part of the identity read,

cos

(
π(
α′

2
k1 · k2)

)
A (2134) + A (1234) + cos

(
π(
α′

2
k2 · k3)

)
A (1324) = 0

sin

(
π(
α′

2
k1 · k2)

)
A (2134)− sin

(
π(
α′

2
k2 · k3)

)
A (1324) = 0 (19)

These are string theory relations. Taking the α→ 0 limit (low energy limit), we have

A(2134) +A(1234) +A(1324) = 0

sA(2134) = tA(1324) (20)

The first identity is the Kleiss-Kuijf (KK) relation while the second identity is the BCJ relation

for Yang-Mills amplitude relation.

Combine KK and BCJ relations, we determined that there is only one linearly independent

4-point partial tree amplitude, A(1234).

B. 5-point

For this case, we set x1 = 0, x3 = 1 and x5 =∞. The string partial amplitudes are

A (21345) =
8i

α′2

(
1√
2

)3 ∫ ∞
1

dx4

∫ 0

−∞
dx2 (−x2)

α′
2
k1·k2(1− x2)

α′
2
k2·k3(x4 − x2)

α′
2
k2·k4

×(x4)
α′
2
k1·k4(x4 − 1)

α′
2
k3·k4 f̄(x2, x4) (21)

A (12345) =
8i

α′2

(
1√
2

)3 ∫ ∞
1

dx4

∫ 1

0
dx2 (x2)

α′
2
k1·k2(1− x2)

α′
2
k2·k3(x4 − x2)

α′
2
k2·k4

×(x4)
α′
2
k1·k4(x4 − 1)

α′
2
k3·k4 f̄(x2, x4) (22)

A (13245) =
8i

α′2

(
1√
2

)3 ∫ ∞
1

dx4

∫ x4

1
dx2 (x2)

α′
2
k1·k2(x2 − 1)

α′
2
k2·k3(x4 − x2)

α′
2
k2·k4

×(x4)
α′
2
k1·k4(x4 − 1)

α′
2
k3·k4 f̄(x2, x4) (23)

A (13425) =
8i

α′2

(
1√
2

)3 ∫ ∞
1

dx4

∫ ∞
x4

dx2 (x2)
α′
2
k1·k2(x2 − 1)

α′
2
k2·k3(x2 − x4)

α′
2
k2·k4

×(x4)
α′
2
k1·k4(x4 − 1)

α′
2
k3·k4 f̄(x2, x4) (24)

Consider the integration

0 =

∫ ∞+iε

−∞+iε
dx2(x2)

α′
2
k1·k2(1− x2)

α′
2
k2·k3(x4 − x2)

α′
2
k2·k4 (25)

for the fixed x4. Then we have the monodromy identity,

eiπ(α
′
2
k1·k2)A (21345) + A (12345) + e−iπ(α

′
2
k2·k3)A (13245) + e−iπ(α

′
2
k2·k3+k2·k4)A (13425) = 0. (26)
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which has the following α′ → 0 limit as the BCJ identity,

s12A(21345)− (s23)A(13245) + (s23 − s24)A(13425) = 0. (27)

Using all KK and BCJ relations for the 5-point partial tree amplitudes, we find that only

A(12345) and A(13245) are linearly independent.

II. KLT RELATION

KLT relation is a classic relation for string theory [2]. It has surprising implication for graviton

amplitudes in Einstein theory and supergravity.

In general, a closed string tree amplitude read,

A(12 . . . n) = gn−2
c 4π

(
2

α′

)n+1 ∫ d2z1d
2z2 . . . d

2zn
d2zad2zbd2zc

|zb − za|2|zc − zb|2|zc − za|2

×
( ∏

1≤i<j≤n
(zj − zi)

α′
2
ki·kj

)
exp

(∑
i<j

α′εi · εj
2(zi − zj)2

+
∑
i 6=j

α′ki · εj
2(zi − zj)

)

×
( ∏

1≤i<j≤n
(z̄j − z̄i)

α′
2
ki·kj

)
exp

(∑
i<j

α′ε̄i · ε̄j
2(z̄i − z̄j)2

+
∑
i 6=j

α′ki · ε̄j
2(z̄i − z̄j)

)∣∣∣∣
bilinear

(28)

Note that there is no ordering here. Here the subscript “bilinear” means that only the εi,µε̄i,ν terms

are kept in the final result and recombined as εi,µε̄i,ν → ei,µν . Note that there is no ordering of the

closed string vertices.

The first nontrivial KLT relation is the four point scattering amplitudes. The real and imaginary

part of the integral in closed string amplitude, can be treated as two independent real integrals.

However, we have to take care of the contours. Let z1 = 0, z2 = z, z3 = 1 and z4 → ∞, and (28)

reads,

Ac(1234) = 4πg2
c

(
2

α′

)5 ∫
d2z z

α′
2
k1·k2(1− z)

α′
2
k2·k3f(z) z̄

α′
2
k1·k2(1− z̄)

α′
2
k2·k3 f̄(z̄) (29)

where f(z) is a holomorphic function which contains the polarization vectors. Similar f̄(z̄) is the

conjugation of f(z).

f(z) = lim
z4→∞

z2
4 exp

(∑
i<j

α′εi · εj
2(zi − zj)2

+
∑
i 6=j

α′ki · εj
2(zi − zj)

)∣∣∣∣
linear

f̄(z̄) = lim
z̄4→∞

z̄2
4 exp

(∑
i<j

α′ε̄i · ε̄j
2(z̄i − z̄j)2

+
∑
i 6=j

α′ki · ε̄j
2(z̄i − z̄j)

)∣∣∣∣
linear

(30)
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The integral is over the whole complex plane, and both z and z̄ are complex. Let z = x+ iy,∫
d2z 7→ 2

∫
dx

∫
dy (31)

and the integrand is analytic both in x and y. We would like to consider y on the whole complex

plane. Note the possible poles of y are

y = ix, i(1− x), i(x− 1),−ix (32)

which are all on the imaginary axis. Hence we can use the Wick rotation, as Fig.(1). Now y is

imaginary (up to the infinitesimal prescription), so both x+iy and x−iy are real. Define ξ = x+iy

Ù ây

Ù ây

FIG. 1: Analytical continuation of y.
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and η = x− iy, and the integral (28) reads,

Ac(1234) = 4πig2
c

(
2

α′

)5 ∫ ∞
−∞

dξ

∫ ∞
−∞

dη|ξ|
α′
2
k1·k2 |1− ξ|

α′
2
k2·k3f(ξ) |η|

α′
2
k1·k2 |1− η|

α′
2
k2·k3 f̄(η)

× exp

(
iπ
α′

2
k1 · k2θ(−ξη) + iπ

α′

2
k2 · k3θ(−(1− ξ)(1− η))

)
(33)

where the phase term comes from the prescription of the contour. θ(. . .) is the Heaviside step

function. (33) looks like a product of open string amplitudes.

However, there are 3 different orderings in the ξ integral while 3 orderings in the η integral. So

it seems that (28) would be the sum of 3 × 3 = 9 pairs of open string amplitudes. However, we

can represent the phase as the contour of η integral. Only when 0 < ξ < 1, the contour of η is

nontrivial. It is shown in (2). If we use the contour C1, (33) becomes,

0 1 C1

C2

FIG. 2: Contour integral for η when 0 < ξ < 1. The original contour can be deformed to either C1 or C2.

Ac(1234) = 8πg2
c

(
2

α′

)5

sin

(
α′πk2 · k3

2

)
×
∫ 1

0
dξ|ξ|

α′
2
k1·k2 |1− ξ|

α′
2
k2·k3f(ξ)

×
∫ ∞

1
dη|η|

α′
2
k1·k2 |1− η|

α′
2
k2·k3 f̄(η)

= 4π
g2
c

α′g4
sin

(
α′πk2 · k3

2

)
A (1234)A (1324) (34)

and similarly if we use the C2, the result is,

Ac(1234) = 8πg2
c

(
2

α′

)5

sin

(
α′πk1 · k2

2

)
×
∫ 1

0
dξ|ξ|

α′
2
k1·k2 |1− ξ|

α′
2
k2·k3f(ξ)

×
∫ 0

−∞
dη|η|

α′
2
k1·k2 |1− η|

α′
2
k2·k3 f̄(η)

= 4π
g2
c

α′g4
sin

(
α′πk1 · k2

2

)
A (1234)Ā (2134) (35)

These two results are equivalent.

Note that the proof of 4 point KLT relation actually provides all 4 point BCJ relations.

The low energy limit reads,

AEinstein(1234) ∝ tA(1234)A(1324) (36)
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This means the 4-point tree level Einstein gravity amplitude is a double copy of Yang-Mills partial

amplitudes, with different orderings.

We may consider gravity MHV amplitude AEinstein(1−2−3+4+).

AEinstein(1−2−3+4+) ∝ t 〈12〉4

〈12〉〈23〉〈34〉〈41〉
[34]4

[13][32][24][41]
∝ 〈12〉4[34]4

stu
(37)

Note that the pole structure is completely symmetric.

Similarly, n-point (n > 4) tree level closed string amplitude can be decomposed as the sum of

open string amplitude products. For example, the five-point KLT relation is,

Ac(12345) =
g3
c

g6α′2
sin

(
α′πk1 · k2

2

)
sin

(
α′πk3 · k4

2

)
A (12345)Ā (21435)

+
g3
c

g6α′2
sin

(
α′πk1 · k3

2

)
sin

(
α′πk2 · k4

2

)
A (13245)Ā (31425). (38)

Note that unlike the four point case, this identity is the sum of two pairs. Taking the low energy

limit, we have

AEinstein(12345) ∝ s12s34A(12345)Ā(21435) + s13s24A(13245)Ā(31425). (39)

The minimum number of pairs for general KLT relations was counted in [2].

(n− 3)!(
n− 3

2
)!(
n− 3

2
)!, n is odd

(n− 3)!(
n− 4

2
)!(
n− 2

2
)!, n is even (40)

A. Hidden identities

The 4D graviton-axion-dilaton gravity action in Einstein frame,

S =
1

2κ2

∫
d4x
√
−G(R− 2∂µφ∂

µφ− 1

12
e−4φHµνρH

µνρ) (41)

where φ is the dilaton and Hµνρ is the strength of the antisymmetric field. We just keep the

two-derivative term and neglect the higher-derivative terms from string theory correction. (So it

is the low energy effective action for the gravity sector of any string theory.) The Poincare dual of

Hµνρ is an axion,

∂µb =
1

6
e−4φεµνρσH

µνρ (42)

where ε0123 = (−detG)1/2 and ε0123 = −(−detG)1/2. So the action can be rewritten as

S =
1

2κ2

∫
d4x
√
−G(R− 2∂µφ∂

µφ− 1

12
e4φ∂µb∂

µb) (43)
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Combining the axion and the dilaton, we have S± = b± ie−2φ and,

S =
1

2κ2

∫
d4x
√
−G(R− 1

2

|∂µS+|2

(ImS+)2
) (44)

Note that the axion b is characterized by the shift symmetry

b 7→ b+ c (45)

where c is a dimensionful constant. Furthermore S+ has SL(2,R) global symmetry. The group

SL(2, R) a b

c d

 , ad− bc = 1 (46)

acts on S+ as,

S+ 7→
aS+ + b

cS+ + d
. (47)

S+ takes value in the upper complex plane, which is the moduli space of this theory. We may

choose 〈S+〉 = i. Then the unbroken symmetry is SO(2),a b

c d

 =

 cos θ sin θ

− sin θ cos θ

 (48)

We will see that this unbroken symmetry lead to the quadratic identities of Yang-Mills theory.

To study the perturbative theory of the axion-dilaton, we may define S± =
√

2κτ + i and

τ = τ1 + iτ2. Now 〈τ〉 = 0 and τ has the canonical kinetic terms,

S =
1

2κ2

∫
d4x
√
−GR− 1

2

∫
d4x
√
−G ∂µτ∂

µτ̄

(1 +
√

2κτ2)2

=
1

2κ2

∫
d4x
√
−GR− 1

2

∫
d4x
√
−G∂µτ∂µτ̄(1− 2

√
2κτ2 + 6κ2τ2

2

−8
√

2κ3τ3
2 + ...) (49)

all the interaction terms contain positive powers of κ, as it should be. To the leading order, the

symmetry 48 acts on τ as,

τ 7→ τ + 2iθτ, (50)

So τ has an infinitesimal U(1) symmetry. We may think that τ is positively charged and corresponds

to the polarization ε+ε̃−, while τ is negatively charged and corresponds to the polarization ε−ε̃+.
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Now we see that the dilaton and the axion combine to form a massless complex scalar field

τ , which has a global conserved U(1) charge associated with it. All scattering (tree or loop)

amplitudes must obey this charge conservation.

Within helicity amplitudes, graviton j has helicity ε±j ε̃
±
j̃

= j±j̃± and an incoming positively

charged scalar field j may be identified with helicity j+j̃− while an incoming negatively charged

scalar field may be identified with helicity j−j̃+. Any charge conservation-violating amplitude A

must vanish. That is, any amplitude with unequal numbers of positively and negatively charged

scalar fields will vanish. Let us start with a non-vanishing M -graviton scattering amplitude. Fol-

lowing the BDFS notation, let n+ (n−) be the number of ” + ” (”− ”) helicities in YM amplitude

A that have been flipped in YM amplitude Ã. Then the resulting amplitude vanishes whenever

n+ 6= n−.

Let us consider the 4-point case to establish some notation: the graviton-dilaton-axion scattering

amplitude takes the form

AEinstein = −s12A(1234)Ã(2134) (51)

where both A and Ã are YM amplitudes. For 4-graviton amplitudes, helicity conservation requires

2 with helicity (++) and 2 with helicity (−−). So the only non-vanishing amplitude has the form

AEinstein = −s12A(1−2−3+4+)Ã(2−1−3+4+) (52)

Note that both A and Ã are maximal helicity-violating amplitudes. Next consider the 5-graviton

scattering case,

AEinstein,5 = s12s34A(1−2−3+4+5+)Ã(2−1−4+3+5+)

+ s13s24A(1−3+2−4+5+)Ã(3+1−4+2−5+) (53)

For n+ − n− 6= 0, the resulting A5 = 0. For example, for (n+, n−) = (1, 0), we have

0 = s12s34A(1−2−3+4+5+)Ã(2−1−4+3−5+) +

s13s24A(1−3+2−4+5+)Ã(3−1−4+2−5+) (54)

It is easy to verify this quadratic identity by using the explicit formulae for the MHV amplitudes.

For M ≥ 6, non-MHV amplitudes appear in the quadratic identities.

III. FURTHER READING

For the tree-level and loop-level BCJ relation, see [3]. For the application of the BCJ relation for

the five-loop N = 8 supergravity, check [4]. For the application of the BCJ relation for gravitational
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wave, check [4, 5] and the references therein.
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